degs‘TY Op
é\

S

° =

E 3
= —
S

2
Q)
Z

Beijing-Dublin International College
I Ax$ 7,

1960

SEMESTER 1 FINAL EXAMINATION - 2019/2020

COMP3007J Design Patterns

MODULE COORDINATOR: Junbiao Pang
Time Allowed: 95 minutes

Instructions for Candidates

BJUT Student ID: UCD Student ID:

| have read and clearly understand the Examination Rules of both Beijing University of
Technology and University College Dublin. | am aware of the Punishment for Violating the
Rules of Beijing University of Technology and/or University College Dublin. | hereby
promise to abide by the relevant rules and regulations by not giving or receiving any help

during the exam. If caught violating the rules, | accept the punishment thereof.

Honesty Pledge: (Signature)

Instructions for Invigilators
All electronic devices, notebooks, books, work papers are strictly prohibited.

BDIC Semester one Academic Year (2018 — 2019)

1. Directions: choose the best answer for each numbered question and mark A, B, C, or D on
ANSWER SHEET. (40 points)

1. Which the statement about the Single Responsibility Principle(SRP) is WRONG (C):

A.
B.
C.

A class is only responsible for one responsibility in a functional domain.

It should be only one reason to change a class.

The more responsibilities a class has, the easier it is to be reused, and the more likely it is to
be reused.

When a class has many responsibilities, it needs to separate the responsibilities and further

encapsulate the different responsibilities in different classes.

2. To achieve object-oriented analysis and design, (1) is a module that should be open in terms of

scalability but yet be closed in terms of maintainability; meanwhile, (2) means that subclasses

could be able to replace the parent class and further could replace the parent class in a program.

A (1). A. Open Closed Principle B. Liskov Substitution Principle
C. Dependence Inversion Principle D. Single Responsibility Principle

B (2) A. Open Closed Principle B. Liskov Substitution Principle
C. Dependence Inversion Principle D. Single Responsibility Principle

3. Which the following statement is WRONG LD:

A. The high-level modules should not depend on the low-level ones.

B. Abstraction should not depend on the details.

C. The details could depend on abstraction.

D. The high-level modules have to depend on the low-level ones.

4. For the Interface Segregation Principle, which the following statement is WRONG (ﬁ:

A.
B.

Clients should not depend on the unwanted interfaces when we design a software.

When an interface has too many methods, it is better to reconstruct this interface into several
ones which have a few methods; the advantage is that clients just needs to know the relevant
methods.

Ideally, each interface should only define one function; by this way, the resulting interface
would be easily to be used.

An interface represents only one role, and each role has a specific interface.

Page 2 of 12

BDIC Semester one Academic Year (2018 — 2019)
5. A software should interact with other software as few as possible. Because when a module is
modified, it will affect other modules as little as possible; besides, it would make the extendibility

of software easy. This is the definition of (A):

A. Law of Demeter Principle B. Interface Segregation Principle

C. Liskov Substitution Principle D. Aggregation Reuse Principle

6. Which the following statement of the simple factory method pattern is WRONG (@

A. Simple factory method pattern could return instances of the different classes depending on
the inputted parameters.

B. Simple factory method pattern specifically defines a class to be responsible for creating
instances of other classes, and the created instances usually have a common parent class.

C. Simple factory method pattern can reduce the number of classes in a software and thus
simplify the design of the software.

D. The expendability of a software is limited. If you add a new product, you have to modify the
logic of the factory, which would violate the Open and Closed Principle.

7. The following code uses the (IL\) pattern:
A. Simple Factory
B. Factory Method
C. Abstract Factory
D

No design patterns are used

public abstract class ExchangeMethod {

public abstract void process ();

public class DigitalCurrency extends ExchangeMethod{
public void process(){...}

}

public class CreditCard extends ExchangeMethod{
public void process(){...}

public class Factory{
public static ExchangeMethod createProduct(String type){
switch(type){
case"DigitalCurrency":
return new DigitalCurrency();break;
case"CreditCard":

return new CreditCard();break;

Page 3 of 12

BDIC Semester one Academic Year (2018 — 2019)

}
}
}

8. Fig. 1 is the class diagram of the () pattern. B

A. Abstract Factory B. Factory Method

C. Command D. Chain of Responsibility
° Product © Creator
Ay A
ConcreteProduct Concrele.Creator
P
Fig.1

9. A bank system uses the factory method pattern to model the relationship between different
accounts. The class diagram is shown in Fig.2. The class corresponding to the "creator" in the

factory method pattern is (1); the class corresponding to the "product” is (2).

(1) A.bank B.Account C.Checking D. Savings
(2) A.bank B.Account C.Checking D. Savings

Bank Client

+ createAccount()

Holds

Account
{abstract}

I

Checking Savings

Fig. 2

10. When a product has a complex internal structure, in order to gradually construct this object
and further make it more extendible, you could use (): C

A. Abstract Factory Method Pattern B. Prototype Pattern

C. Builder pattern D. Singleton Pattern

11. A company plans to develop a live chat software that allows users to communicate with

multiple friends at the same time in a public window, and generates a new chat window for a

Page 4 of 12

BDIC Semester one Academic Year (2018 — 2019)
friend if the private chat is involved. To increase efficiency of this system, when a friend requires
a private chat, you need to quickly create a new chart window based on the public window. For

this demand, (C)/would be used.

A. Flyweight pattern B. Singleton Pattern

C. Prototype Pattern D. Composite Pattern

12. The (A) pattern combines multiple objects into a tree structure to represent a "part-whole"

hierarchy, and also makes users uniformly treat the individual objects and the composite objects.
A. Composite B. Bridge C. Decorator D. Facade

13. (1) pattern separates the abstract part from its implementation, so that these classes could
change independently. Fig.3 shows the class diagram for this pattern, where (2) is used to define

the interface.

=
Abstraction Implementor

impl

+ operationlmpl()

+ operation()

impl.operationimpl();

RefinedAbstraction ConcretelmplementorA ConcretelmplementorB

+ operation() + operationlmpl() + operationlmpl()

Fig. 3
FO (1) A. Singleton B. Bridge C. Composite D. Facade

D (2) A. Abstraction B. ConcreteImplementorA

C. ConcretelmplementorA D. Implementor

14. Now, we need to develop an XML processing software, which can query the specified content
according to the supplied keyword. The user can select a certain node in the XML as the initial
node for a query; meanwhile, users do not need to care about the hierarchical structure of this

node. For this requirement, we can use () pattern.

A. Abstract Factory B. Flyweight C. Composite D. Strategy

15. Which of the following statement is NOT reasonable in Fig. 4 ()@

A. Dynamically determine which object from a set of ones to handle a request.

B. Dynamically assign a request to a set of objects, and the request would be efficiently handled.

C. make multiple objects have the opportunity to handle a request, and decouple the sender and

the receiver.

Page 5 of 12

BDIC Semester one Academic Year (2018 — 2019)

D. organize objects into a chain, and pass a request along this chain.

Client Handler

successor

+ handleRequest()

SN

ConcreteHandlerA ConcreteHandleB
+ handleRequest() + handleRequest()
Fig.4

16. Fig. 5 shows the class diagram of the calculator which uses command pattern. (1) acts as the

request caller, and (2) acts as the charge request receiver.

Command |
Calculator it
- command : Command
¥ conpiiel) + execute()
[]
AddCommand J l SubCommand
- addObj : AddOperator | |- subObj : SubOperator
+ execute() J [+ execute()

SubOperator

AddOperator

Fig.5
[\ (1) A. Calculator B. Command C. AddCommand D. AddOperator
D (2) A. Calculator B. Command C. AddCommand D. AddOperator

2. Directions: Read the following text, some code segments have been removed. Please complete these
programs to make sure them output the correct results. More importantly, all programs should
FOLLOW the principle of the object-oriented programming principles. Write the answer for
each numbered blank on ANSWER SHEET. (40 points)

1. Acompany wants to develop a data format transfer tool that can convert a data between different

data sources, such as, change TXT files, databases, and Excel tables, into XML format.

In order to make the system more scalable, we wish that new data sources could be supported in

the future. Therefore, developers intend to use the Factory Method Pattern to design the core class of

the conversion tool. Factory class encapsulates the initialization and creation process for some data

types, as shown in Fig. 6.

Page 6 of 12

BDIC Semester one Academic Year (2018 — 2019)

* ConvertorCreator ° Convertor
+ getConvertor() d + transform()
LA A
ey S T RNy v r e, *
DBConvertorCreator TXTConvertorCreator DBConvertor TXTConvertor
+ getConvertor() + getConvertor() + transform() + tra;\\sform()
| i 1)
| : | :
| | | i
b o o o ——— - | ______________ 4 \
b o e e e e o~ ——— o —— ——— 4

Fig.6
In the figure, ConvertorCreator is the interface of an abstract factory that declares the factory
method getConvertor(), which is implemented in its subclasses; Convertor is the interface of the
abstract product which declares the abstract data transformation method transform (). The classes
DBConvertor and TXTConvertor are individually used to convert data stored both in the database
and in the TXT file to the XML format.

interface ConvertorCreator{

(1) public Convergor getlonvertor|)

interface Convertor{

public String transform ();

Class DBConvertorCreator implements ConvertorCreator
public Convertor getConvertor(){
(2) retn e DBConverpor()
}

class TXTConvertorCreator implements ConvertorCreator{
public Convertor getConvertor(){

(3L return pew TXT Convertorl)
}

class DBConvertor implements Convertor{
public String transform(){

//Implementation code omitting

}

Page 7 of 12

BDIC Semester one Academic Year (2018 — 2019)

class TXTConvertor implements Convertor{
public String transform(){

//Implementation code omitting

class Test{
public static void main(String args[]){
ConvertorCreator creator;
(4); Conwertor conver boF
creator=new DBConvertorCreator();
convertor=(5); £ ¥ enfor . 9@f Con ver tor!)

convertor.transform();

}

}

If you need to convert data for a new type of data source, the system needs to add at least

Lt WO (16) classes. Which the object-oriented design principles are used in the factory method pattern?
(_7) (multiple choices).
A. Open and Closed Principle A B
Dependence Inversion Principle
Interface Segregation Principle

Single Responsibility Principle

m Y 0w

Composite Reuse Principle

2. To design an image browsing system, which is expected to display an image with the BMP, JPEG
or GIF formats on both Windows and Linux operating systems. The system firstly parses the images
with the BMP, JPEG, or GIF formats into the pixel matric, and then displays the pixel matric on the

displayer. The system is required to be well scalable for new file formats and operating systems.

In order to meet these requirem&nts and reduce the number of subclasses, the resulting class diagram
rioge

is shown in Fig.7, where (1 p'attgrn is used. The reason for adopting this design pattern is that the

classes for parsing BMP, JPEG, and GIF files are only related to the file format. But, the code for

displaying pixels on the displayer is only related to the operating systems.

Page 8 of 12

BDIC Semester one Academic Year (2018 — 2019)

Image ® Imagelmp
>
+ setlmp() + doPaint()
+ parseFile() JA
BMP GIF JPEG Winlmp Linuxlmp
Fig.7

class Matrix{//Files in various formats are eventually converted into pixel matric

//Code is omitted here

interface Imagelmp{
public void doPaint(Matrixm); //Display pixel matrixm

class Winlmp implements Imagelmp{
public void doPaint(Matrixm){/* Call the drawing function of the
Windows system to draw the pixel matrix */)

class Linuxlmp implements Imagelmp{
public void doPaint(Matrix m){/* Call the drawing function of
the Linux system to draw the pixel matrix */}

abstract class Image{
public void setlmp(Imagelmp imp){

bhs imp (2)=imp;}
public abstract void parseFile(String fileName);
protected(3)imp;

} I mage lmp

class BMP extends Image{
public void parseFile(String fileName){
//Parse the BMP file here and get a pixel matrix object m
(4) //Display pixel matrix m
}

class GIF extends Image{
//Code omitted here

Page 9 of 12

BDIC Semester one Academic Year (2018 — 2019)

class JPEG extends Image{
//Code omitted here
}

public class Main{
public static void main(String[]args)

{
//View the demo.bmp image file on the Windows operating system
Image imagel=(5); new EMP ()
Imagelmp imagelmpl=(6); new \/\/unlrr‘]ﬂ)5
(7) 1M vﬂet, Set | imag elppl)
imagel.parseFile("demo.bmp");

}

}
Now suppose that the software needs to support 10 types of image files and 5 types of the operating

N

systems, without considering Matrix class and Main class. If we still use the pattern in Fig. 7, the number

of classes at least should be (_ 8). ﬂ

3.The procurement of an enterprise is approved by the different level of managers. That is, different

levels of supervisors would be granted to approve the orders with the different amounts.

More specially, the director can only approve the amount of an order which is less than 50,000
$ (excluding 50,0008), the vice chairman can approve the amount of an order which is between
50,0008 and 100,0008 (excluding 100,0008$), and the chairman can approve the amount of an order which
is between 100,000 and 500,000$ (excluding 500,0008). An order with more than 500,000$ should be
discussed by all people.

By the chain of responsibility pattern, the following class diagram is illustrated in Fig. 8.

PurchaseRequest Approver
: ::‘:“&: i?:l“ble - - successor : Approver
+ purpose :Slring + setSuccessor (Approver aSuccessor)
: + processRequest (
PurchaseRequest aRequest)

’
’ S T
- approver
purchase
order

Director VicePresid President Congress

| i \
1 | \
direct vice = i
irector chairman chairman

Fig.8

Page 10 of 12

BDIC Semester one Academic Year (2018 — 2019)

class PurchaseRequest{
public double amount;
public int number;
public String purpose;

//Approver class
class Approver{
public Approver(){ successor=null;}
public void processRequest(PurchaseRequest aRequest){
if(successor!=null){successor.(1);} fVD @s< Reimey{(ﬂ}z@‘tw_ﬁ 7/”)
public void setSuccessor(Approver aSuccessor){successor=aSuccessor;)
private(2)successor;

oo RpYover

class Congress extends Approver{
public void processRequest(PurchaseRequest aRequest){
if(aRequest.amount>=500000){/* Code omitted here*/}

else (3).processRequest(aRequest);
} super

class Director extends Approver{
public void processRequest(PurchaseRequest aRequest){/* Code omitted here*/}

class President extends Approver{
Public void processRequest(PurchaseRegiest aReguest){/*Code omitted here*/}

class VicePresident extends Approver{
Pubic void processRequest(PurchaseReguest aReguest)/*Code omitted here*/}

public class Test{
public static void main(String[]args)throws |IOException{

Congress meeting=new Congress();
VicePresident sam=new VicePresident();
Director larry=new Director();
President tammy=new President();
meeting.setSuccessor(null);
sam.setSuccessor((_4)); fﬂmﬂ'y
tammy.setSuccessor((_5)); meez‘ﬂ'ﬂ
larry.setSuccessor((6)) sgm)
//Construct a procurement approval request
PurchaseRequest aRequest=new PurchaseRequest();
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
aRequest.amount=Double.parseDouble(br.readLine());

(_7).processRequest(aRequest);
1 Ly

Page 11 of 12

BDIC

Semester one

Academic Year (2018 — 2019)

3. Directions: The following requirements is from the different clients. By FOLLOWING the
principle of the object-oriented programming principles, you, as a software engineer, should: 1)
give the solution in a UML class diagram; and 2) write the corresponding JAVA code on ANSWER

SHEET. (20 points)

1. Haier. TCL and Hisense are all electrical appliance manufacturers. They produce Televisions, Air

Conditioners, and Refrigerators. A software is needed to manage these electrical appliance

manufacturers and

the appliances they produce.

It is required to draw a class diagram and implement it with JAVA.

2. A software company intends to develop a software to generate electronic music. This software is

expected to use an algorithm to simulate one instrument and further generate its sounds. Naturally, this

software needs multiple algorithms to generate the sounds of different instruments.

Besides, the generated sounds should be exported into different audio format, for example, mp3, wma,

and Cda etc.

According to the above description, please select a suitable design pattern to design this software.

EFoctoy
+ procce Teleursions () Televisim
+produce fir() - Niv conoli fion
T prooke Refrigeratas(). Refri Gerabar

U —

Hor Fac bory
4 prodduce Telowrsions () Tele visian
+produce fir() + Livconoh bion
T Prooke Ke{»r.’ geratas(). Refrigeratar

= = =

E— \ !

—_— - — - A — = —

)

TCL Factary

+produce fiv() -

+ prochnce Telovrsions () * Tefowision
Al' 4 CM“‘“
¥ Procke Refrigeradars() Refri gerator

tion

f

(
1

H 1'Sence Fuq;avy
4 procuce Telewrsions () Te/e Vision
tproduce el) -+ Nivconoli bion
¥ Proche Refrigeratas(). Refrigerats

) \ v v 7 - -

o] [ey (71] 8] RC) [HST| [FOR
+ Ofevatent) wevWWJ + Oferonl) - — —

| / g _ —

' /) /

| s g / 0

| \; - “Je /C\))\Sl'on P\Q;V‘ﬂeyﬁt s

v Coandli tron X)
L = Alrc q f-f 0}7@}’(}(-{7;‘0}[} Af g/)e ratren
= 0)76\/0\{7!‘ on

Page 12 of 12

