
 

__________________________________________ 
 

SEMESTER 1 FINAL EXAMINATION - 2019/2020 
___________________________________________ 

 
 

COMP3007J  Design Patterns 
 
 

MODULE COORDINATOR: Junbiao Pang 
 

Time Allowed: 95 minutes 
 

Instructions for Candidates 
 
 

BJUT Student ID: ________________UCD Student ID: ________________ 

I have read and clearly understand the Examination Rules of both Beijing University of 

Technology and University College Dublin. I am aware of the Punishment for Violating the 

Rules of Beijing University of Technology and/or University College Dublin. I hereby 

promise to abide by the relevant rules and regulations by not giving or receiving any help 

during the exam. If caught violating the rules, I accept the punishment thereof. 

Honesty Pledge：_____________________________________________ (Signature) 

 
 
 

Instructions for Invigilators 
All electronic devices, notebooks, books, work papers are strictly prohibited. 

 
 
 
 
 
 

 

 

Beijing-Dublin International College 

 



BDIC Semester one Academic Year (2018 – 2019) 

Page 2 of 12 

1. Directions: choose the best answer for each numbered question and mark A, B, C, or D on 
ANSWER SHEET. （40 points） 

1.  Which the statement about the Single Responsibility Principle(SRP) is WRONG (    ): 

A. A class is only responsible for one responsibility in a functional domain.  

B. It should be only one reason to change a class.  

C. The more responsibilities a class has, the easier it is to be reused, and the more likely it is to 

be reused.  

D. When a class has many responsibilities, it needs to separate the responsibilities and further 

encapsulate the different responsibilities in different classes. 

2. To achieve object-oriented analysis and design, ( 1 ) is a module that should be open in terms of 

scalability but yet be closed in terms of maintainability; meanwhile, ( 2 ) means that subclasses 

could be able to replace the parent class and further could replace the parent class in a program. 

(1). A. Open Closed Principle                           B. Liskov Substitution Principle 

C. Dependence Inversion Principle            D. Single Responsibility Principle 

(2)  A. Open Closed Principle                           B. Liskov Substitution Principle 

      C. Dependence Inversion Principle            D. Single Responsibility Principle 

3.  Which the following statement is WRONG (  ): 

A. The high-level modules should not depend on the low-level ones. 

B. Abstraction should not depend on the details. 

C. The details could depend on abstraction. 

D. The high-level modules have to depend on the low-level ones. 

4.  For the Interface Segregation Principle, which the following statement is WRONG (  ): 

A. Clients should not depend on the unwanted interfaces when we design a software. 

B. When an interface has too many methods, it is better to reconstruct this interface into several 

ones which have a few methods; the advantage is that clients just needs to know the relevant 

methods. 

C. Ideally, each interface should only define one function; by this way, the resulting interface 

would be easily to be used. 

D. An interface represents only one role, and each role has a specific interface. 

-
C

A

B

D

C



BDIC Semester one Academic Year (2018 – 2019) 

Page 3 of 12 

5.  A software should interact with other software as few as possible. Because when a module is 

modified, it will affect other modules as little as possible; besides, it would make the extendibility 

of software easy. This is the definition of (   ): 

A. Law of Demeter Principle                B. Interface Segregation Principle 

C. Liskov Substitution Principle           D. Aggregation Reuse Principle 

6.  Which the following statement of the simple factory method pattern is WRONG ( ): 

A. Simple factory method pattern could return instances of the different classes depending on 

the inputted parameters. 

B. Simple factory method pattern specifically defines a class to be responsible for creating 

instances of other classes, and the created instances usually have a common parent class. 

C. Simple factory method pattern can reduce the number of classes in a software and thus 

simplify the design of the software.  

D. The expendability of a software is limited. If you add a new product, you have to modify the 

logic of the factory, which would violate the Open and Closed Principle. 

7.  The following code uses the (   ) pattern: 

A. Simple Factory 

B. Factory Method 

C. Abstract Factory 

D. No design patterns are used 

public abstract class ExchangeMethod { 
    public abstract void process (  ); 
} 
 
public class DigitalCurrency extends ExchangeMethod{ 
  public void process(  ){...} 
} 
 
public class CreditCard extends ExchangeMethod{ 
    public void process(  ){...} 
} 
... 
 
public class Factory{ 
    public static ExchangeMethod createProduct(String type){ 
      switch(type){ 
        case"DigitalCurrency": 
        return new DigitalCurrency(  );break; 
        case"CreditCard": 
        return new CreditCard(  );break; 

A

C

A



BDIC Semester one Academic Year (2018 – 2019) 

Page 4 of 12 

        ... 
     } 
    } 
} 

8.  Fig. 1 is the class diagram of the (  ) pattern. 

   A. Abstract Factory         B. Factory Method 

   C. Command                   D. Chain of Responsibility 

 
Fig.1 

9.  A bank system uses the factory method pattern to model the relationship between different 

accounts. The class diagram is shown in Fig.2. The class corresponding to the "creator" in the 

factory method pattern is ( 1 ); the class corresponding to the "product" is ( 2 ). 

(1)  A. bank       B. Account       C. Checking       D. Savings 

(2)  A. bank       B. Account       C. Checking       D. Savings 

 
Fig. 2 

10.  When a product has a complex internal structure, in order to gradually construct this object 
and further make it more extendible, you could use (  ): 

A. Abstract Factory Method Pattern        B. Prototype Pattern  

C. Builder pattern                                    D. Singleton Pattern 

11.  A company plans to develop a live chat software that allows users to communicate with 

multiple friends at the same time in a public window, and generates a new chat window for a 

B

A
B

C



BDIC Semester one Academic Year (2018 – 2019) 

Page 5 of 12 

friend if the private chat is involved. To increase efficiency of this system, when a friend requires 

a private chat, you need to quickly create a new chart window based on the public window. For 

this demand, (  ) would be used. 

A. Flyweight pattern          B. Singleton Pattern 

C. Prototype Pattern          D. Composite Pattern 

12. The (  ) pattern combines multiple objects into a tree structure to represent a "part-whole" 

hierarchy, and also makes users uniformly treat the individual objects and the composite objects. 

A. Composite             B. Bridge          C. Decorator           D. Facade 

13. ( 1 ) pattern separates the abstract part from its implementation, so that these classes could 

change independently. Fig.3 shows the class diagram for this pattern, where ( 2 ) is used to define 

the interface. 

 
Fig. 3 

（1） A. Singleton               B. Bridge                C. Composite                D. Facade 

（2） A. Abstraction                                   B. ConcreteImplementorA 

          C. ConcreteImplementorA                 D. Implementor 

14.  Now, we need to develop an XML processing software, which can query the specified content 

according to the supplied keyword. The user can select a certain node in the XML as the initial 

node for a query; meanwhile, users do not need to care about the hierarchical structure of this 

node. For this requirement, we can use (  ) pattern. 

A. Abstract Factory          B. Flyweight           C. Composite        D. Strategy 

15. Which of the following statement is NOT reasonable in Fig. 4 (   ) 

A. Dynamically determine which object from a set of ones to handle a request. 

B. Dynamically assign a request to a set of objects, and the request would be efficiently handled. 

C. make multiple objects have the opportunity to handle a request, and decouple the sender and 

the receiver. 

C

A

B

D

E

B



BDIC Semester one Academic Year (2018 – 2019) 

Page 6 of 12 

D. organize objects into a chain, and pass a request along this chain. 

 
Fig.4 

16.  Fig. 5 shows the class diagram of the calculator which uses command pattern. ( 1 ) acts as the 

request caller, and ( 2 ) acts as the charge request receiver. 

 
Fig.5 

(1) A. Calculator        B. Command        C. AddCommand        D. AddOperator 

(2) A. Calculator        B. Command        C. AddCommand        D. AddOperator 

2. Directions: Read the following text, some code segments have been removed. Please complete these 
programs to make sure them output the correct results. More importantly, all programs should 
FOLLOW the principle of the object-oriented programming principles. Write the answer for 
each numbered blank on ANSWER SHEET. （40 points） 

1、A company wants to develop a data format transfer tool that can convert a data between different 

data sources, such as, change TXT files, databases, and Excel tables, into XML format.  

In order to make the system more scalable, we wish that new data sources could be supported in 

the future. Therefore, developers intend to use the Factory Method Pattern to design the core class of 

the conversion tool. Factory class encapsulates the initialization and creation process for some data 

types, as shown in Fig. 6. 

At

D



BDIC Semester one Academic Year (2018 – 2019) 

Page 7 of 12 

 
Fig.6 

In the figure, ConvertorCreator is the interface of an abstract factory that declares the factory 

method  getConvertor(  ), which is implemented in its subclasses; Convertor is the interface of the 

abstract product which declares the abstract data transformation method transform (  ). The classes 

DBConvertor and TXTConvertor are individually used to convert data stored both in the database 

and in the TXT file to the XML format. 

interface ConvertorCreator{ 

    (  1  ); 

} 

 

interface Convertor{ 

    public String transform ( ); 

}  

 

Class DBConvertorCreator implements ConvertorCreator 

    public Convertor getConvertor( ){ 

    (  2  ); 

    } 

} 

 

class TXTConvertorCreator implements ConvertorCreator{ 

    public Convertor getConvertor( ){ 

    (  3  ); 

    } 

} 

 

class DBConvertor implements Convertor{ 

    public String transform( ){ 

    //Implementation code omitting 

    } 

public Convertor getconvertor) ;

return new DB Convertor1) ;

return new TXT Convertor1) ;



BDIC Semester one Academic Year (2018 – 2019) 

Page 8 of 12 

} 

 

class TXTConvertor implements Convertor{ 

    public String transform( ){ 

   //Implementation code omitting 

    } 

} 

 

class Test{ 

    public static void main(String args[ ]){ 

   ConvertorCreator creator; 

   (  4  ); 

      creator=new DBConvertorCreator( ); 

      convertor=(  5  ); 

            convertor.transform( ); 

          } 

} 

If you need to convert data for a new type of data source, the system needs to add at least 

(  6  ) classes. Which the object-oriented design principles are used in the factory method pattern? 

(  7  ) (multiple choices). 

A．Open and Closed Principle   

B．Dependence Inversion Principle 

C．Interface Segregation Principle 

D．Single Responsibility Principle 

E．Composite Reuse Principle 

2．To design an image browsing system, which is expected to display an image with the BMP, JPEG 

or  GIF formats on both Windows and Linux operating systems. The system firstly parses the images 

with the BMP, JPEG, or GIF formats into the pixel matric, and then displays the pixel matric on the 

displayer. The system is required to be well scalable for new file formats and operating systems.  

In order to meet these requirements and reduce the number of subclasses, the resulting class diagram 

is shown in Fig.7, where ( 1  ) pattern is used. The reason for adopting this design pattern is that the 

classes for parsing BMP, JPEG, and GIF files are only related to the file format. But, the code for 

displaying pixels on the displayer is only related to the operating systems. 

Convertor convertor

Creator . get Convertors) ;

two

-

A B

-

Bridge



BDIC Semester one Academic Year (2018 – 2019) 

Page 9 of 12 

 
Fig.7 

class Matrix{//Files in various formats are eventually converted into pixel matric  
    

//Code is omitted here 
} 
 
interface ImageImp{ 
 public void doPaint(Matrixm); //Display pixel matrixm  
} 
 
class WinImp implements ImageImp{ 
public void doPaint(Matrixm){/* Call the drawing function of the  
      Windows system to draw the pixel matrix */) 
} 
 
class LinuxImp implements ImageImp{ 
 public void doPaint(Matrix m){/* Call the drawing function of  
      the Linux system to draw the pixel matrix */} 
} 
 
abstract class Image{ 
 public void setImp(ImageImp imp){ 
 (  2  )=imp;} 
 public abstract void parseFile(String fileName); 
 protected(  3  )imp; 
} 
 
class BMP extends Image{ 
 public void parseFile(String fileName){ 

//Parse the BMP file here and get a pixel matrix object m 
 (  4  )                      //Display pixel matrix m 
 } 
} 
 
class GIF extends Image{ 
 //Code omitted here 
} 

this imp

& mageImp



BDIC Semester one Academic Year (2018 – 2019) 

Page 10 of 12 

 
class JPEG extends Image{ 
 //Code omitted here 
} 
 
public class Main{ 
 public static void main(String[ ]args) 
 { 
  //View the demo.bmp image file on the Windows operating system 
  Image imagel=(  5  ); 
  ImageImp imageImp1=(  6  ); 
  (  7  ); 
  imagel.parseFile("demo.bmp"); 
 } 
} 

Now suppose that the software needs to support 10 types of image files and 5 types of the operating 

systems, without considering Matrix class and Main class. If we still use the pattern in Fig. 7, the number 

of classes at least should be (  8  ). 

3.The procurement of an enterprise is approved by the different level of managers. That is, different 

levels of supervisors would be granted to approve the orders with the different amounts.  

More specially, the director can only approve the amount of an order which is less than 50,000 

$ (excluding 50,000$), the vice chairman can approve the amount of an order which is between 

50,000$ and 100,000$ (excluding 100,000$), and the chairman can approve the amount of an order which 

is between 100,000$ and 500,000$ (excluding 500,000$). An order with more than 500,000$ should be 

discussed by all people. 

By the chain of responsibility pattern, the following class diagram is illustrated in Fig. 8. 

 
Fig.8 

 

new BMP1(
new WinImpl) ;

imagel . set/imag eImp1)

-
-

17



BDIC Semester one Academic Year (2018 – 2019) 

Page 11 of 12 

class PurchaseRequest{ 
 public double amount;   
 public int number;   
 public String purpose;  
 
//Approver class 
class Approver{ 
 public Approver( ){ successor=null;} 
 public void processRequest(PurchaseRequest aRequest){ 
  if(successor!=null){successor.(  1  );} 
 public void setSuccessor(Approver aSuccessor){successor=aSuccessor;) 
 private(  2  )successor; 
 } 
 
class Congress extends Approver{ 
 public void processRequest(PurchaseRequest aRequest){ 
  if(aRequest.amount>=500000){/*Code omitted here*/} 
  else (  3  ).processRequest(aRequest); 
 } 
} 
 
class Director extends Approver{ 
 public void processRequest(PurchaseRequest aRequest){/*Code omitted here*/} 
} 
 
class President extends Approver{ 
 Public void processRequest(PurchaseRegiest aReguest){/*Code omitted here*/} 
} 
 
class VicePresident extends Approver{ 
 Pubic void processRequest(PurchaseReguest aReguest)/*Code omitted here*/} 
} 
 
public class Test{ 
 public static void main(String[]args)throws IOException{ 
  Congress meeting=new Congress( ); 
  VicePresident sam=new VicePresident( ); 
  Director larry=new Director( ); 
  President tammy=new President( ); 
  meeting.setSuccessor(null); 
  sam.setSuccessor((  4  )); 
  tammy.setSuccessor((  5  )); 
  larry.setSuccessor((  6  )) 
  //Construct a procurement approval request 
  PurchaseRequest aRequest=new PurchaseRequest( ); 
  BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 
  aRequest.amount=Double.parseDouble(br.readLine( )); 
  (  7  ).processRequest(aRequest); 
 } } 

Process Request/ahequest)

Approver

super

tammy
meeting
Sam

Larry



BDIC Semester one Academic Year (2018 – 2019) 

Page 12 of 12 

3. Directions: The following requirements is from the different clients. By FOLLOWING the 
principle of the object-oriented programming principles, you, as a software engineer, should: 1) 
give the solution in a UML class diagram; and 2) write the corresponding JAVA code on ANSWER 
SHEET. (20 points） 

 
1. Haier、TCL and Hisense are all electrical appliance manufacturers. They produce Televisions, Air 

Conditioners, and Refrigerators. A software is needed to manage these electrical appliance 

manufacturers and the appliances they produce.  

It is required to draw a class diagram and implement it with JAVA. 

 
 

2. A software company intends to develop a software to generate electronic music. This software is 

expected to use an algorithm to simulate one instrument and further generate its sounds. Naturally, this 

software needs multiple algorithms to generate the sounds of different instruments.  

Besides, the generated sounds should be exported into different audio format, for example, mp3, wma, 

and Cda etc.  

According to the above description, please select a suitable design pattern to design this software. 

 

 

 

 

EFactory
+Produce Televisions 1) : Television
+produceAir)) : Air condition
+ produce Refrigerators :) : Refrigerator

* *
- i =

--
- I

↑

I
I

I I !
Hair Factory TCL Factory Hisence Factory

+Produce Televisions 1) : Television
+Produce Televisions 1) : Television

+Produce Televisions 1) : Television
+produceAir)) : Air condition +produceAir)) : Air condition +produceAir)) : Air condition
+ produce Refrigerators :) : Refrigerator + produce Refrigerators :) : Refrigerator + produce Refrigerators :) : Refrigerator

↓ ↓ +↓ ↓ ↓ ↓ ↓ HSAC HST HISR
H9

Itactionsnations + operations , Ent1iT iB ---- - -

↓

-

&

L /D Y Television Refrigerators
-> 1 Air

Condition ↳
-

+ operation
↑ operation

+ operation


